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Abstract—High sensitivity and angular resolution radio astron-
omy at sub-10 MHz frequencies is only possible with a space-
borne observatory due to Earth’s ionospheric cutoff frequency.
Due to mass and volume constraints, sensing low frequencies
on a small spacecraft necessitates an electrically small antenna
with inherently low sensitivity compared to a resonant antenna.
Interferometric constellations must trade off antenna sensitivity
with the number of constellation elements. More complex an-
tennas that offer significant performance advantages can poten-
tially lower constellation sizes and make implementation more
practical. The electromagnetic vector sensor antenna, composed
of three dipole elements and three loop elements with a common
phase center, is compact and efficient, but is new to astronomy
applications and less well characterized than simpler antennas.
We investigate the sensitivity of vector sensor antennas as a func-
tion of spatial direction and frequency, which are key metrics
in the design and calibration of an astronomy antenna array.
We start by determining the sensor’s response to correlated
external and uncorrelated internal noise. We then determine the
sensor’s system equivalent flux density (SEFD) based on optimal
beamforming of the constituent loops and dipoles. We compare
the SEFD with that of the more commonly-considered dipole
and tripole antennas and show that a vector sensor exceeds their
performance twofold. Finally, we demonstrate our method on a
case study of the AERO-VISTA CubeSat mission which features
a pair of deployable vector sensor antennas.
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1. INTRODUCTION
Electromagnetic vector sensors, first introduced for terrestrial
applications by [1], contain three mutually orthogonal dipoles
and three loop antennas, all sharing a common phase center.
The vector sensor has appealing properties including the
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ability to beamform by direction and polarization from a
single position [2] and direction finding and polarization es-
timation [3]. Recent work has demonstrated a vector sensor’s
potential for sky mapping [4], [5]. A deployable vector sensor
antenna is planned for demonstration in space on the AERO-
VISTA mission [6], [7] which will map Earth’s auroral radio
emissions from 100 kHz – 15 MHz.

There is growing interest in space-based radio astronomy
at frequencies below the Earth’s ionospheric cut-off (∼10
MHz)[8], [9], [10]. Vector sensor antennas have not been an-
alyzed for sensitivity to astronomical signals in the same way
as more commonly used dipoles, crossed dipoles, tripoles,
or search coils, especially in the context of multi-antenna
interferometry. We analyze vector sensor sensitivity for
comparison with other low frequency antenna technologies
being considered for radio astronomy space missions.

In this paper, we analyze the system equivalent flux density
(SEFD) of a vector sensor via optimal beamforming, taking
into account spatially correlated and uncorrelated noise. Our
method, described in Section 2, allows for antennas with
heterogeneous elements (i.e., elements with differing effec-
tive lengths, receiver noise levels, radiation efficiencies, etc.)
by modeling the differing frequency responses of loops and
dipoles. We demonstrate the method on a case study of
AERO-VISTA’s deployable vector sensor implementation in
Section 3. We also compare vector sensor sensitivity with
that of sensors with fewer receptors. Section 4 summarizes
results and provides directions for future work.

2. METHODS
Measurement Model

The vector sensor’s instantaneous measurement, vtot, is the
sum of contributions from the target signal vsig, external
noise vext, and internal noise vint, all of which are frequency-
dependent:

vtot = vsig + vext + vint (1)

We assume that the incident signal, external noise, and in-
ternal noise are mutually uncorrelated zero-mean complex
Gaussian processes. We derive the root-mean-square (RMS)
voltage spectral density, in units of V/

√
Hz, measured at

each antenna component (i.e., the standard deviation of each
Gaussian). We start with the incident signal.

A completely polarized electromagnetic signal is incident
from the direction (θ, ϕ). Its electric field, e, has root-mean-
square (RMS) strength Erms, and polarization parameterized
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by auxiliary angle α and phase delay δ:

e = Erms

[
ejδ sinα
cosα

]
(2)

This incident field induces a voltage onto each element of the
vector sensor, resulting in a measurement vector:

vsig = Ermsa(θ, ϕ, α, δ) (3)

where a(θ, ϕ, α, δ) is the array manifold. The vector sensor
array manifold is given in several prior works (e.g., [1], [3],
[11]), but all have subtle differences depending on choice of
coordinate system, polarization parameterization, and receiv-
ing or transmitting antenna. To eliminate possible confusion,
we provide the derivation used for this work in Appendix 4.
Finally, the signal covariance matrix is defined as

Rsig = vHsigvsig = E2
rmsaa

H , (4)

where the ()H superscript denotes the conjugate transpose, or
Hermitian, of the vector.

Correlated External Noise

While the targeted astronomical source constitutes the signal
in our application, there are many other sources, astronom-
ical and terrestrial, radiating concurrently that may also be
received by a vector sensor’s full-sky field of view. We
categorize these sources as interference or external noise, and
process them with the array manifold in the same manner as
the signal of interest because they are spatially coherent.

Sky Models—The spatially resolved sky brightness temper-
ature (or surface brightness map) at frequencies below 30
MHz is not well characterized due to ionospheric opacity
and lack of high angular resolution space-based data. There
are, however, analytical and numerical projections based on
observational data from higher frequencies.

To study direction-dependent effects, we use a set of sky
maps generated by the Ultra Long wavelength Sky model
with Absorption (ULSA) software [12]. ULSA starts with
observational data at higher frequencies and adds the effect
of absorption in the interstellar medium to extrapolate all-
sky maps at frequencies 10 MHz and below. An example of
a map generated from the ULSA model at 1 MHz is given
in Figure 1. A prominent feature in this map is the dark
region along the galactic equator. At higher frequencies, the
emission from the interstellar medium in the plane of our
galaxy makes that region bright, but in the low frequency case
this model shows a cooler galactic plane/center due to free-
free absorption which becomes more prominent below ∼2
MHz [13]. The low temperature region near 270◦ longitude
is due to missing observational data, and there are several
hot spots corresponding to bright sources (e.g., Cygnus A).
The emissions in this map are thought to be predominantly
unpolarized.

We use the ULSA model maps to study direction-dependent
effects at selected frequencies (1, 3, and 10 MHz). However,
generating ULSA maps for a swept frequency range would
be computationally expensive. Therefore, to study trends in
frequency, we instead use an isotropic unpolarized sky with
mean temperature given by a scaling law [13]:

Tsky =

{
16.3× 106 K ( ν

2 MHz )
−2.53 if ν > 2 MHz

16.3× 106 K ( ν
2 MHz )

−0.3 if ν ≤ 2 MHz (5)

Figure 1. Example of sky temperature distribution (in
galactic coordinates) created using the Ultralong-wavelength
Sky Model with Absorption (ULSA) software package [12].

This model is a piece-wise power law fit for observations
of the Radio Astronomy Explorer 2 (RAE-2) space mission
([14], [15]). We note that the mean sky temperatures gen-
erated at selected frequencies by the ULSA model are in
agreement with the temperatures produced by this scaling
law.

External Noise Covariance— The flux density contribution
from a solid angle ∆Ω in direction (θ, ϕ) is obtained from
Rayleigh-Jeans law, where kB is Boltzmann’s constant and λ
is wavelength:

S(θ, ϕ) =
2kB
λ2

Tsky(θ, ϕ)∆Ω (6)

Assuming that the sky background is unpolarized, the orthog-
onally polarized components of the incident electric field are
modeled as a zero mean Gaussian with variance in terms of
the flux density [16]:

Eθ(θ, ϕ) ∼ N
(
0,
η0
2
S(θ, ϕ)

)
(7)

Eϕ(θ, ϕ) ∼ N
(
0,
η0
2
S(θ, ϕ)

)
(8)

where η0 is the impedance of free space. To find the co-
variance of the signals measured by the six channels of the
vector sensor, the electric field variance in each polarization
is processed with the array manifold and superimposed over
all directions of incidence as follows:

Rext =
∑
Ω

E2
θ,rms(θ, ϕ)aθa

H
θ + E2

ϕ,rms(θ, ϕ)aϕa
H
ϕ (9)

=
∑
Ω

η0
2
S(θ, ϕ)(aθa

H
θ + aϕa

H
ϕ ) (10)

=
kBη0
λ2

∑
Ω

Tsky(θ, ϕ)(aθa
H
θ + aϕa

H
ϕ )∆Ω, (11)

where aθ(θ, ϕ) and aϕ(θ, ϕ) are the steering vectors for θ-
polarization and ϕ- polarization respectively.

Uncorrelated Internal or Thermal Noise

Typically, the spectral noise (W/Hz) contribution from an
antenna is modeled as [17]

Pn = kBτ [ηrTE + (1− ηr)Tp] (12)

where τ is the mismatch loss factor, ηr is radiation efficiency,
TE is the effective antenna temperature and Tp is the physical
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antenna temperature. We deviate from this model for two
reasons. First, the effective antenna temperature, which is
the background sky temperature weighted by the antenna
radiation pattern [18], treats the external noise as spatially
uncorrelated, but we treat the external noise as correlated, as
described in Section 2. Second, the mismatch factor is highly
dependent on receiver design and there is a tradeoff between
good match and wide bandwidth. Receiver design is outside
the scope of this paper and we refer the interested reader to
[19]. Mismatch affects both the signal and noise generated
prior to the receiver equally, and does not show in the signal to
noise ratio, so we do not model it. However, noise generated
within the receiver is not scaled by the mismatch loss, and can
be modeled as an input-referred receiver noise temperature,
Trx. Finally, radiation efficiency in electrically small antennas
is so low that we simplify 1 − ηr ≈ 1. Thus, we model
the uncorrelated internal noise as the sum of the contribution
from the antenna’s thermal noise due to ohmic resistance, and
the input-referred receiver noise temperature:

Pn = kB [Tp + Trx] (13)

Since internal noise is uncorrelated, its covariance matrix Rint
is a diagonal matrix with the noise power on the diagonal.
The value of Tp can vary broadly depending on the space-
craft’s exposure to sunlight throughout the orbit and presence
of a heater or cryo-cooler to maintain the temperature. In this
work, we assume Tp = 250 K as an average temperature
in low Earth orbit. However, the exact value of Tp isn’t
critical for electrically small antennas because it is likely to
be negligible compared with the receiver noise temperature,
Trx, which includes the receiver electronics noise and effects
due to mismatch. In Section 3 we discuss an example where
this is the case.

Beamformer Weights

The vector sensor produces a measurement for each of its
constituent elements, and we seek to combine these mea-
surements to obtain a total sensitivity metric. One way to
do this is via beamforming, i.e., taking a weighted sum of
the measurements. There are several options for determining
beamformer weights. We use the minimum variance dis-
tortionless response (MVDR) beamformer in the following
analysis because it provides the optimal weights for maxi-
mizing the signal to noise ratio (SNR) for the direction and
polarization of interest [2], [20]:

wopt =
R−1aψ

aHψR
−1aψ

, (14)

where the covariance matrix R = Rext + Rint since the
external noise is uncorrelated with the internal noise. In a
radio astronomy application, this matrix would apply for two
cases: 1) imaging and mapping, where the correlated external
noise is the signal of interest, and 2) transient detection,
where it is possible to measure the noise without the signal
present.

SEFD

We quantify the vector sensor’s sensitivity using SEFD, a
common metric in radio astronomy. SEFD is defined as
the “flux density of a radio source that doubles the system
temperature.” 2 In other words, it is the flux density of a signal
such that the SNR would be 1:1 given the level of noise in
the system. It quantifies the total system noise in terms of

2https://science.nrao.edu/facilities/vla/docs/manuals/oss/performance/sensitivity

the dimmest source that can be reliably detected (per fixed
bandwidth and integration time). Thus, lower values of SEFD
correspond to higher sensitivity.

An unpolarized signal incident from direction (θ, ϕ), pro-
cessed with beamformer weights w, produces beamformed
output power [16]

Ps,out =
η0
2
S(θ, ϕ)wH(aθa

H
θ + aϕa

H
ϕ )w, (15)

while a fully polarized signal parameterized by ψ =
(θ, ϕ, α, δ) yields beamformed output power

Ps,out = η0S(θ, ϕ)w
H(aψa

H
ψ )w. (16)

Meanwhile, the noise power at the beamformer output is [16]

Pn,out = wHRw. (17)

SEFD is found by equating Equations (15) and (17) and
solving for the flux density S, assuming that the signal of
interest is unpolarized:

SEFD(θ, ϕ) =
2

η0

wHRw

wH(aθaHθ + aϕaHϕ )w
(18)

If the signal of interest is instead assumed fully polarized,
then Equation (16) is used, and the SEFD is

SEFD(θ, ϕ) =
wHRw

η0wH(aψaHψ )w
. (19)

It may be unusual to see SEFD as a function of direction
(θ, ϕ), since traditionally in radio astronomy it is given as
a function of antenna noise temperature and effective area
(namely, SEFD = 2kBTsys/Aeff) [21]. However, the tradi-
tional expression is applicable to antennas with narrow fields
of view, and it has been shown that wide-field antennas are
better characterized by a direction-dependent SEFD [22].

The next section demonstrates the application SEFD to an-
alyze the sensitivity of AERO-VISTA’s implementation of a
vector sensor.

3. ANALYSIS
We validate the presented models by comparing theoretical
performance of the AERO-VISTA vector sensor implementa-
tion with antenna simulations performed using Altair Feko3,
and with circuit simulations performed using the ADS soft-
ware suite4. The results of these simulations were reported
in [19]. Theoretical performance is calculated according to
analytical formulas for small loop and small dipole antennas
[18]. The vector sensor dimensions used for the calculations
are listed in Table 1 and illustrated in Figure 2. Dipoles along
the x- and y- axes are not explicitly visible in the diagram
because each of the two rectangular loops has a dual feed,
allowing it to serve as a dipole in differential mode and as
a loop in common mode [23], [19]. Of the six antenna
elements, four are unique because the x-dipole and y-dipole

3https://altair.com/feko
4https://www.keysight.com/us/en/products/software/pathwave-design-
software/pathwave-advanced-design-system.html
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Table 1. AERO-VISTA Antenna Dimensions[19]

Dipole length 4 m
Monopole length 2 m
X-Loop height 0.3 m
X-Loop perimeter 8.6 m
X-Loop area 1.2 m2

P-Loop perimeter 11.3 m
P-Loop area 8 m2

Wire diameter 0.81 mm
Wire conductivity 5.7× 107 S/m

Figure 2. AERO-VISTA antenna dimensions. Modified
from [19]

are identically constructed but with a 90◦ rotation between
them about the z-axis, and the x-loop and y-loop are also
identically constructed with the same 90◦ rotation about the
z-axis. The z-dipole is realized as monopole because the
spacecraft body occupies the space below the xy-plane. The
z-loop is formed by a cable spanning the perimeter of the
deployed x- and y-loops, and hence we refer to it as the
perimeter-loop or p-loop for short.

Comparing Antenna Parameters

Figure 3 compares the radiation resistances predicted by
analytical formulas (solid lines) with ones determined by
electromagnetic simulation (dashed lines). The dipole and
monopole analytical formulas predict a higher radiation resis-
tance than obtained by the simulation. This is explained by
effects of shadowing by the loop wires, limited counterpoise
of the monopole, and losses in the mode-forming circuitry,
described in [19], which are not included in the analytical
model. The P-Loop shows some divergence from the simula-
tion above 10 MHz because it is the largest loop and at high
frequencies it cannot be considered electrically small, so the
model breaks down. Nevertheless, the analytical results are
within a factor of 2 or less of the simulation results over the
majority of the frequency range of interest, indicating that the
analytical model can yield relatively accurate estimates.

AERO-VISTA’s design does not impedance match the re-
ceiver with the antenna, instead favoring a consistent re-
sponse over a very wide bandwidth [19]. As a consequence of
this design choice, the receiver sees a source impedance that

Figure 3. AERO-VISTA element radiation resistances:
model versus simulation comparison.

Figure 4. AERO-VISTA element input-referred noise
temperatures compared with the isotropic sky temperature

model from Equation (5).

deviates significantly from the optimum impedance for lowest
noise figure. Receiver noise is increased and in this case it
exceeds the expected external noise at most frequencies, as
shown in Figure 4. The input-referred noise temperatures of
Figure 4 are used to model internal noise because the thermal
noise associated with the antenna’s ohmic losses is negli-
gible compared to the noise associated with the receiver’s
impedance mismatch.

Finally, we compare SEFD calculated via the model with that
predicted by the circuit simulation on an element-by-element
basis in Figure 5. The SEFD for individual elements was
computed using the expression

SEFD =
8kBTsysRrad

η0ℓeff
(20)

where Tsys is the system noise temperature, Rrad is radiation
resistance, and ℓeff is the effective length of the antenna
element. Since the electromagnetic simulation assumed a
fully polarized incident field, but SEFD refers to unpolarized
incident field, we divide our calculated SEFD in half to
consider only the co-polarized component of the incident
flux. For the most sensitive elements, the dipole and P-loop,
the model shows a higher flux density (lower sensitivity) than
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Figure 5. AERO-VISTA single-element equivalent flux
densities based on our model compared with those reported

by [19]. The difference is due to our model including
external noise, which peaks around 2 MHz.

the simulation around 2 MHz, despite having good agreement
for frequencies above and below. This is because the external
noise, which peaks in power at 2 MHz according to Equation
5, was included in the model but not in the simulation; in
other words, these elements become externally noise limited
in a small frequency band around 2 MHz. The monopole is
barely sensitive enough to be affected by external noise, and
the X-loop is unaffected.

Beamforming Performance

The SEFD of AERO-VISTA’s vector sensor is computed
using optimal beamforming, following the steps in Section
2. Since the vector sensor has a wide non-uniform beam-
pattern, the response depends on the steering direction of the
beamformer. First, we discuss a frequency sweep where we
beamform in an arbitrary representative direction not aligned
with any element’s nulls (235◦ azimuth, 25◦ elevation), and
second, we discuss a directional sweep at a fixed frequency
(1 MHz). Both cases assume unpolarized incident signals.

AERO-VISTA’s SEFD is plotted in Figure 6 as a function
of frequency alongside the previously computed SEFD of
individual elements. Figure 6 also plots the beamformed
SEFD of 1) a tripole composed of just the two dipoles and
monopole subset of AERO-VISTA’s vector sensor, and 2) a
reference crossed-dipole that is identical to AERO-VISTA’s
x- and y- dipoles but oriented so the direction of incidence is
at its boresight. These two extra traces are plotted to illustrate
the improvement in SEFD that a vector sensor has over
sensors with fewer receptors, namely tripoles and crossed-
dipoles.

Array gain is defined as the ratio of SNR at the beamformer
output to the SNR at the input [20]. Figure 7 plots the
array gain of AERO-VISTA’s vector sensor and the tripole
subset. Also plotted are array gains for an ideal vector sensor
and an ideal tripole, which differ from AERO-VISTA by
having identical elements (i.e., three identical dipoles rather
than two dipoles and a shorter monopole, and x- and y-
loops enlarged to be similar to the p-loop, without regard
for physical implementation). The ideal vector sensor and
ideal tripole elements are sized to have effective length equal
to AERO-VISTA’s dipoles at 1 MHz. Since AERO-VISTA’s
monopole is less sensitive than its dipoles, the tripole which

Figure 6. Comparison of AERO-VISTA’s beamformed
vector sensor SEFD to the SEFD of its individual elements.

Also plotted are SEFD of a tripole and crossed-dipole.

Figure 7. AERO-VISTA beamformed array gain compared
with ideal antenna.

they form is slightly less sensitive than the ideal tripole.
Comparing the array gain between vector sensor and tripole,
we find that AERO-VISTA’s loops contribute to the overall
antenna sensitivity, but not as much as they could if they were
bigger as in the case of the ideal vector sensor.

Finally, we examine the direction-dependent SEFD at a fixed
frequency. The background sky temperature distribution,
shown in Figure 1, was treated as correlated noise incident
onto the vector sensor. The resulting SEFD as a function
of direction is plotted in Figure 8. Two lobes are seen, one
corresponding to the noisy area in the northern region of
the input map, and the second a mirror image. In contrast,
the same analysis of the ideal vector sensor indicated only a
single lobe corresponding to the noisy area in the input map.
AERO-VISTA’s SEFD has two lobes due to the disparity in
its elements sensitivities. The X-dipole and Y-dipole are the
two most sensitive elements, so they are most impacted by
external noise, but their beam patterns are symmetric in the
z-direction, meaning they are incapable of distinguishing on
which side of the xy-plane the direction of arrival is. The
monopole and loops, dominated by internal noise, do not
provide enough information to disambiguate the direction, so
there is a mirror image of the noisy lobe below the xy-plane.
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Figure 8. Direction-dependent SEFD for AERO-VISTA
with correlated external noise.

Overall, this result indicates that for the given orientation of
the satellite, signals measured at the galactic poles will be
slightly noisier than signals measured at the galactic equator.

4. CONCLUSION
We present a generalized method for finding the direction-
dependent SEFD of a vector sensor antenna. The method
allows for heterogeneous antenna elements and accounts for
antenna losses. We demonstrated the method on a case study
of AERO-VISTA’s deployable vector sensor and found the
analytical results in good agreement with circuit simulations.
Having a rapidly-computable analytical model is useful for
designing a large astronomy array composed of this type of
antenna.

We also demonstrate the sensitivity advantage of a vector
sensor antenna over antennas with fewer receptors, namely
tripoles and crossed-dipoles. The sensitivity advantage justi-
fies the extra hardware mass and power consumption, which
are valuable resources in space applications. This is particu-
larly relevant for future space-based low frequency interfer-
ometric arrays, where minimizing the number of elements
by maximizing the sensitivity of each element is desirable.
Vector sensors may also provide valuable phase information
and additional degrees of freedom to be exploited during
interferometry, which is a subject of current research by the
authors.

Future work could include investigating the effect of satel-
lite attitude, particularly pointing nulls at bright interfering
sources to improve performance in other directions, or mixing
different attitudes of two or more satellites to fill lower
sensitivity “blind spots” due to nulls in the antenna patterns.
Future work can also include investigating sensitivity to po-
larized signals and comparing the results to those of [24].
Additionally, interaction of the plasma environment in low
Earth orbit with the antenna dipole elements will effect their
impedance [25] and have frequency dependent impacts on
sensitivity that merit further investigation.

APPENDIX: VECTOR SENSOR ARRAY
MANIFOLD

The response of an idealized vector sensor as a function of
the incident signal’s direction and polarization is derived by
several authors, namely [1], [3], and [11], but all arrive at
different formulas, which is attributed to them using different
coordinate systems or receive/transmit assumptions. This

work considers a receiving vector sensor in the coordinate
system conventionally used in physics, illustrated in Figure
2.

We start with the polarization response, or Jones matrix, of a
dipole triad, or tripole [26]:

Jtri =

[
cos θ cosϕ − sinϕ
cos θ sinϕ cosϕ
− sin θ 0

]
(21)

The first three rows of the Jones matrix for a vector sensor are
given by the tripole’s matrix. We seek the remaining three
rows which represent the loop responses to magnetic field.
They are derived in [1] using a cross-product operator, based
on the fact that electric field, magnetic field, and direction of
propagation form an orthogonal triad.

Jvs =

[
I3
u×

]
Jtri (22)

with I3 as the 3× 3 identity matrix, and

u× =

[
0 −uz uy
uz 0 −ux
−uy ux 0

]
(23)

where ux, uy , and uz are the Cartesian components of
the vector u, the direction of propagation. In the present
coordinate system, u = [sin θ cosϕ, sin θ sinϕ, cos θ]T,
which means that

u× =

[
0 − cos θ sin θ sinϕ

cos θ 0 − sin θ cosϕ
− sin θ sinϕ sin θ cosϕ 0

]
(24)

The resulting vector sensor Jones matrix is

Jvs =


cos θ cosϕ − sinϕ
cos θ sinϕ cosϕ
− sin θ 0
− sinϕ − cos θ cosϕ
cosϕ − cos θ sinϕ
0 sin θ

 (25)

If the incident signal’s electric field polarization is described
with auxiliary angle α and phase delay δ,

p̂(α, δ) =

[
ejδ sinα
cosα

]
, (26)

which is the unit vector part of Equation (2), then the ideal-
ized vector sensor’s response is

vsig = J(θ, ϕ)p̂(α, δ) (27)

This result matches exactly the matrix given in [3] and makes
clear the origin of their formulation. The matrix derived by
[11], who calls it polarization response matrix, differs only
in sign in the first three rows, and this is due to describing a
transmitting antenna rather than a receiving one.

So far, Equation (27) represents the response of a “unit” vec-
tor sensor and it needs to be scaled by each element’s effective
length (effective height), the ratio between incident electric
field strength (in V/m) and the open-circuit voltage induced
at the antenna’s terminals. Some literature refers to vector

6



effective length, which is the product of scalar effective length
and the Jones matrix [18]. Analytical formulas approximate
effective lengths of small dipoles and loops as [27]:

ℓeff:dipole =
ℓ

2
(28)

ℓeff:loop = jkA (29)

where ℓ is the physical length of the dipole, A is the physical
area of the loop, and k = 2π/λ is the wavenumber. We
construct an effective length matrix:

Leff =


ℓ/2 0 0 0 0 0
0 ℓ/2 0 0 0 0
0 0 ℓ/2 0 0 0
0 0 0 jkA 0 0
0 0 0 0 jkA 0
0 0 0 0 0 jkA

 (30)

In this work, Leff is a diagonal matrix, but its off-diagonal en-
tries could serve to model mutual coupling between elements
in future work.

Finally, the vector sensor’s array manifold for a signal in the
direction (θ, ϕ) with polarization (α, δ) is:

a(θ, ϕ, α, δ) = LeffJ(θ, ϕ)p̂(α, δ). (31)
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